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CHAPTER 7 

Learned versus optimizing 

behavior in simple situations 

R. DUNCAN LUCE 

By "simple situations" I mean those experimental designs commonly used 
in psychophysics, learning, and motivation, especially in studies intended 
to test one or another mathematical model. In fact, in this chapter only 
experiments for which the subject has two possible responses are discussed 
because mathematical theories are moderately well worked out only for 
these simple situations. Even there we still do not understand completely 
what is involved, as we shall see. 

If we examine existing mathematical theories for these simple situations, 
we find two quite different classes of models, which, when we focus on 
their mathematical structure, may be described as stochastic and static 
decomposition models or, when we focus on their psychological inter- 
pretations, as adaptive and analytic models. 

Current adaptive (or learning) models attempt to capture a subject's 
trial-by-trial choice behavior in terms of a stochastic process. These 
models apply to situations in which the same choice is repeatedly presented 
and the outcome to the subject on each trial depends both on his response 
and on the stimulus presented. The theoretical problem is to discover 
what remains invariant from trial to  trial and, therefore, what constrains 
This work was supported in part by National Science Foundation Grant NSF G-17637 
to the University of Pennsylvania. 

changes in the response probabilities. To be sure, there are many different 
and competing learning models: Markov chain models that arise from 
Estes' stimulus sampling theory versus operators that transform response 
probabilities; linear versus nonlinear operators; path-independent versus 
path dependent models; and so on, but their common features are rather 
more striking than their differences. All these models are restricted to 
highly repetitive situations in which the subject adjusts his behavior to 
his recent experience (outcomes) in an "adaptive" fashion. 

The analytic or, if you will, cognative models are of a different character. 
First, as suggested by the term "static decomposition models," they are 
static in the sense that no mechanism for trial-by-trial change is provided. 
Since we know that response probabilities do change with experience, 
these models are surely incomplete. Generally, it is claimed that they 
deal only with the asymptotic behavior that follows the learning transient. 
Second, these models describe possible behavioral relations between two 
or  more related choice situations, that is, they "decompose" or "analyze" 
one choice into a function of several others. 

Perhaps the simplest example of an analytic proposition is the weak 
stochastic transitivity hypothesis: if a person chooses a over b at least 
half the time when a and b are presented and b over c at least half the 
time when b and c are presented, then he will choose a over c at least 
half the time when a and c are presented. A more sophisticated example 
of an analytic theory is the well-known subjective expected-utility hypoth- 
esis which says that, for each subject, numerical utilities can be assigned 
to outcomes and numerical subjective probabilities to events in such a 
way that the numerical ordering induced by the subjective expected utility 
of gambles formed from these outcomes and events is the same as the 
subject's preference ordering. Here the decomposition effected by the 
theory is completely apparent: choices among gambles are systematically 
decomposed into numerical statements about their two constituent 
elements, the outcomes and the events. A third example of an analytic 
theory is any of the predictions that we adduce from the logical structure 
of the alternatives. Specifically, suppose a subject is comparing the 
relative likelihood of two events; then, when one event logically implies 
the other, we usually assume that the first will not be judged more likely 
to occur than the second. 

Whatever we may mean by optimization in human behavior-and I do 
not think that it is particularly easy to say-surely it has something to do 
with the decomposition of complex alternatives into more elementary ones 
and with comparisons among alternatives. In some normative theories, 
such as dynamic programming, the optimization may also take into 
account sequential aspects of the situation, but, as far as I am aware, in 



THE DEPENDENCE OF p ,  ON f l  IN GAMBLINO EXPERIMENTS I03 

the descriptive theories of choice that involve optimization there are only 
static comparisons and decompositions. If that is so, it will cause no 
harm, and in some ways will make the argument simpler, to generalize 
the "optimizing" of the title of this chapter to "analytic," that is, to treat 
descriptive theories of optimizing behavior as special cases of analytic 
theories of behavior. 

The adaptive-analytic dichotomy of choice theories constitutes a current 
dilemma of mathematical psychology: beyond a doubt, people exhibit 
both adaptive learning and analytic understanding, and any theory that 
fails to incorporate both aspects is surely going to be shown wrong some 
of the time. Moreover, many psychologists feel that subjects exhibit still 
another mode of behavior, namely, hypothesis testing, which is an aspect 
of learning not included in most of our models. People not only adapt 
to experience and analyze complex choices into simpler ones, but they 
generate and test hypotheses in much the way that statisticians do. Few 
"hypothesis-testing" models exist, and little that is convincing is known 
about the phenomenon experimentally, so we shall ignore it. 

With this as background, let us examine some experiments with an eye 
to deciding whether learning or analytic models better describe what is 
going on. My purpose is to illustrate by means of two well-worked-over 
classes of experiments just how elusive the answer to this question can be. 

THE DEPENDENCE OF p,  ON n IN  GAMBLING EXPERIMENTS 

Since analytic theories do not explicitly provide for trial-by-trial 
changes in behavior, we can evaluate the two classes of theories only in 
terms of asymptotic data. Actually, this restriction is quite convenient for 
the adaptive models as well, because on the whole their asymptotic prop- 
erties are better understood than their transient ones. 

Consider the following experiment: 

Response 

I I1 
a r o l l  " 1 2 1  

Event 
Lo,, " 2 2 1 '  

where on each trial the subject chooses a column, j, a chance event a 
then chooses a row, i, and the subject receives the outcome o ,  so deter- 
mined. Let p ,  denote the asymptotic expected probability that the sub- 
ject will select response 1 and let .rr = Pr(a) denote the probability that 
event a will occur, assuming its occurrences form a Bernoulli chain. 
Question: with the outcomes oij held fixed, how does p, depend on T as 
we vary P over its range from 0 to 1 ? 
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In examining the literature, I have uncovered eight possible answers to 
this question, four of them provided by learning theories and the other 
four by analytic theories. Because some are special cases of others, the 
eight theories actually yield only five distinct proposals. 

First, the learning theory predictions. A one-element stimulus sampling 
model (Suppes, 1961) and an experimenter-controlled linear operator 
model (Bush & Mosteller, 1955) both predict 

When 0,  = O,, (1) reduces to the well-known probability matching predic- 
tion: p ,  = P. Under certain conditions (Lamperti & Suppes, 1960) an 
experimenter-subject controlled (nonlinear) beta model (Luce, 1959) yields 

where the bij are logarithms of the multiplicative learning rate parameters 
bij. The fourth learning model arises from a threshold theory for psycho- 
physical detection (Luce, 1963a), which we discuss in more detail later. 
Suffice it to say that the subject is assumed to act as if there were dis- 
criminative stimuli perfectly correlated with the chance events, whereas, 
of course, such stimuli do not exist. This forces the two stimulus param- 
eters of the phychophysical model to be numerically equal, yielding, 

Next, the predictions from analytic theories. Some attention has been 
given to models in which a "response strength" is attached to each re- 
sponse and the probability of a particular response occurring is simply its 
response strength normalized by the sum of the strengths of all the possible 
responses (Luce, 1959). Becker, DeGroot, and Marschak (1963) have sug- 
gested that for gambling situations the response strength of a response 
should be given as the expected utility of the several outcon~es that may 
occur when that response is chosen. For the foregoing experiment this 
leads to 
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Although (4) is formally the same as (2), which arose from the beta model, 
there is an important difference: all the z l i j  must be positive, whereas some 
of the b,, may be negative (corresponding to pi, < 1). Siege1 (1959, 1961) 
suggested a utility model in which the expected utility depends not only 
on the utilities of each of the outcomes but also on the variability of the 
responses, as measured by p(l  - p). Maximizing the resulting function 
leads to a linear relation betweenp, and w,  which is a special case of the 
beta model (2). Earlier, Edwards (1956) arrived at the same prediction by 
another route. His relative expected loss minimization (RELM) rule was 
based on Savage's loss matrix, that is, the matrix of differences between the 
best possible outcome for the event that occurred and the outcome corre- 
sponding to the response made. The expected loss is then calculated for 
each response. Edwards assumed thatp, is a linear function of the relative 
expected loss. Finally, in 1959 I showed that if the choice axiom1 holds for 
the preference probabilities and for the judgments of event likelihood and 
these two classes of probabilities are statistically independent (a decomposi- 
tion axiom), then, when oll > o,, and ol, > 02,,p, must be a monotonic 
increasing step function of w. 

The qualitative nature of these five predictions is shown in Figure 7-1 
in which the several functions have been plotted for specific parameter 
values. The differences are sufficiently gross that we might hope to choose 
among them experimentally. 

There are a variety of ways to do such an experiment, of which at least 
two have been realized. In the so-called probability prediction experiments 
the subject is told next to nothing about the events, but a long series of 
trials is run at each value of w. One advantage of this procedure is that, 
by plotting proportions of responses for blocks of trials, we can tell whether 
the behavior is approximately asymptotic. Although it is not inherent in 
the design, all published data of this type are for groups of subjects (of 
four to more than 100 members). From our point of view this is unfor- 
tunate because there is little reason to suppose that subjects all have the 
same parameter values, and averages of nonlinear functions with different 
parameters may yield a distorted picture of the family of functions involved. 

Be that as it may, my best estimates of the asymptotic group probabilities 
are plotted in Figure 7-2 for the five experiments that I have found for 
which at least two different values of a were run, explicit payoff matrices 
were employed, and the payoffs were symmetric in the sense that oll = o,, 
and o12 = o,,. Because the data curves seem to have slopes greater than 1 

The choice axiom asserts that if x is a response, R, a set of possible responses including 
2, and S, another set including R, then the response probabilities of z occurring when 
S and R are presented are related by p,(x) = p,(z I R) provided that the conditional 
probability exists. 

iT 

la) 

FIGURE 7-1. (a)  Stimulus sampling and linear learning models. (b) Beta learning, 
utility of variability, and relm models. (c) Threshold model. (d) Strict expected utility 
model. (e)  Decomposition model. 



and to cut across the p ,  = T line, we can reject the one-element and linear 
learning models (1) as well as the combination of the choice model with the 
expected utility hypothesis (4). With so few data points-the most exten- 
sive study used only four values of T-and with group data it does not 
seem possible to choose among the other models. 

Another way to do the experiment, which has not been popular among 
learning theorists but has been among utility theorists, involves giving the 
subject as much information as possible about the events, except, of course, 

- Goodnow (1955) - Edwards (1956) 

0- --0 Edwards (1956) 

Nicks (1959) 

A---A Siegel and Abelson (1961) 
reported in Siegel(1961) 

0 I I I I 

0 0.2 0.4 0.6 0.8 1 .O 
A 

advance knowledge of the actual outcome, and to interleave many different 
presentations. For example, Luce and Shipley (1962) used 6 payoff matrices, 
15 events (spanning a 0.2 probability range) per matrix, and 50 observa- 
tions for each matrix-event pair; the subjects were told the mathematical 
probability of each event. The plots of p ,  versus T obtained in this way 
differ materially from those shown in Figure 7-2. The data for three of the 
five subjects are shown in Figure 7-3. Perhaps the transition from 0 to 1 
for Subject 1 is comparable to that shown in Figure 7-2, but for Subjects 
2 and 3, the transition is surely much more rapid. It  is even more so for 
Subjects 4 and 5, who both exhibited simple discontinuities. 

Matrix 1 Matrix 2 Matrix 3 
Subject 1 

r r 

Event probability 

Subject 2 

Event probability 

Subject 3 

u 
0.40 0.50 0.60 

Event probability 

FIGURE 7-3 



Matrix 4 Matrix 5 Matrix 6 
Subject 1 

r r 

Event probability 

Subject 2 

Event probability 

Subject 3 

Event probability 

FIGURE 3 (continued) 
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As Luce and Shipley showed by a Monte Carlo calculation, the patterns 
of reversals in the estimated probabilities are extremely unlikely under the 
hypothesis of binomial variability superimposed on a smooth, strictly 
increasing function of the usual ogival type. Just what family of functions 
underlies these data is, however, another matter. The "plateaus" that 
seem to exist are consistent with the step-function prediction that arises 
from the choice axiom coupled with the decomposition axiom, but there 
exists enough rounding of the "discontinuities" to suggest that something 
more is involved. Undoubtedly learning effects were present, although 
they do not seem to be the primary phenomenon, and by the nature of the 
experiment we cannot be very confident that any of the plotted points 
really are estimated from asymptotic data. 

This is just about all that is published about the plot of p ,  versus T 

when explicit outcomes are employed. Surely these data are not sufficiently 
clear to decide whether the behavior is controlled primarily by an adaptive 
or an analytic process. Moreover, it is doubtful whether more experiments 
like these will help much, so we must consider alternatives. It seems to me 
that it would be worthwhile to  carry out studies that possess the following 
virtues of both designs : 

1. The subjects are informed fully about the probability structure of 
the mechanism generating the events. 

2. Long runs are carried out at single .rr values so that it is possible to  
decide empirically what part of the data is approximately asymptotic. 

3. A relatively large number (e.g., 15 to 30) of T values are used over the 
range in which the function is different from 0 and 1. 

4. Data for individual subjects are reported. 

DETECTION EXPERIMENTS 

Current analyses of psychophysical detection experiments illustrate 
another difficulty in deciding whether a decision process is primarily 
adaptive or analytic, namely, that the observed behavior is assumed to 
result from a concatenation of two processes, neither of which can be 
observed separately. 

Until recently, psychophysical experiments were analyzed as if only a 
sensory process were involved; however, with the advent of the ROC 
curve, or what 1 prefer to call the isosensitivity curve,2 there is no longer 
a The ROC (receiver operating characteristic) or isosensitivity curve is the exchange 
relation existing in any two stimulus (s, and s,)-two response (r, and r,) situation between 
the conditional response probabilities p(r, ( sl) and p(rl I s3. It is substantially the 
same as a plot of the probabilities of the two types of errors in testing between two 
hypotheses. The nature of this exchange relation in a Yes-No detection experiment is 
discussed more fully later. 
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much doubt that a motivational process also controls the observed behavior. 
For example, in the simple Yes-No design a stimulus is presented in some 
proportion P of the trials and not in the remainder. On each trial the 
subject reports whether he thinks it was presented. Assuming asymptotic 
behavior, the data provide estimates of p(Y I s), i.e., the probability of 
a Yes response when the stimulus is presented, and of p(Y I n), i.e., the 
probability of a Yes response when it is not presented. When the stimu- 
lating conditions are fixed and either the payoff matrix or the presentation 
probability P is varied from run to run, the pairs of estimates ofp(Y I s) 
and p (Y  I n) appear to sweep out a smooth curve; see the data points in 
Figure 7-4 (the theoretical curves are discussed later). The brightness data 

Visual brightness Acoustic 
Subiect 4 Subiect 2 

FIGURE 7-4 

(Swets, Tanner, & Birdsall, 1961) were generated by varying the payoff 
matrix, and the acoustic data (Tanner, Swets, & Green, 1956), by varying 
the presentation probability P. 

As already mentioned, current models propose that two distinct 
processes underlie these data: a sensory one that relates the stimuli to 
hypothetical internal states, which are interpreted as the possible repre- 
sentations of the stimuli, and a decision process that combines the internal 
state with other experimental information, such as the payoff matrix and 
the presentation probabilities, to arrive at a response. In most models the 
sensory process is assumed to depend only on the stimulating conditions 
and to be independent of the past experiences of the subject; the decision 
process is assumed to depend explicitly on the payoff aspects of the experi- 
ment, including in some cases the subject's experiences on previous trials. 

To be more specific, in the signal detectability model (Green, 1960; 
Licklider, 1959; Luce, 1963b; Swets, Tanner, & Birdsall, 1961) the 
internal states are assumed to form a continuum, and the effect of a stimu- 
lus presentation is treated as a random variable distributed (normally) 
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over this continuum. When there are two presentations, as in the Yes-No 
experiment, the separation of the means of the two distributions, when 
normalized by the standard deviation of one of them, is treated as a basic 
stimulus parameter, d', of the model. The decision process involves the 
selection of a cut-point or criterion, c, such that the response is No to all 
presentations that result in an internal state less than c and Yes to those 
that result in a state larger than c. 

For a given set of stimulating conditions, d' is assumed to remain fixed, 
and the isosensitivity curve is generated by varying the cut-point c over its 
possible values. Mathematically, eliminating c from the equations for 
p(Y 1 s) and p(Y I n) yields the functional relation between them with d' 
the single parameter of the resulting family of functions. The theoretical 
curves shown in Figure 7-4 were obtained this way. 

As another example of a two-process model, consider the simplest sort 
of threshold model (Luce, 1963a) in which there are two internal states, 
D and D, corresponding to whether or not a presentation exceeds the 
threshold. The conditional probabilities of going into state D given a 
stimulus and given no stimulus are denoted, respectively, by q(s) and q(n). 
These are the stimulus parameters of the model. The decision process is 
assumed to divide into two parts. Either the subject chooses to say Yes to 
all occurrences of the D state and to some proportion u of the occurrences 
of the b state, or says Yes only to some proportion t of the occurrences 
of the D state and No to the remainder of the D occurrences and to all of 
the b ones. As the bias parameter, u or 1 as the case may be, ranges over 
its possible values (the unit interval), the isosensitivity curve is generated 
for fixed stimulus conditions. This results in two straight-line segments, one 
from (0,O) to (q(n), q(s)) and the other from (q(n), q(s)) to (1, I), as shown 
in Figure 7-5. (The data points are for increments of brightness; they were 
reported by Swets, Tanner, & Birdsall, 1961 .) 

Given psychophysical models of these types, two new theoretical prob- 
lems are presented. First, how do the stimulus parameters d' or q(s) and 
y(n) depend on physically measurable aspects of the stimulating condi- 
tions? Second how do the decision parameters c or u and t depend on other 
aspects of the design, such as the payoffs and the presentation probabilities 
that are believed to affect these parameters? We consider only the second 
problem here. 

In signal detectability theory it is usually assumed that the subject 
chooses the cut-point c so that his expected money return is maximized. 
It turns out that the relevant function of payoffs and presentation prob- 
abilities is 



Green (1960) examined the relation between the predicted and actual 
cutoffs, assuming, of course, that the rest of the signal detectability model 
is correct, and he found that although they are monotonically related there 
is an appreciable and systematic discrepancy from perfect prediction. He 
argued that this failure of the model is due largely to the fact that the 
expected value function is nearly flat in the neighborhood of its maximum. 
It is also possible, however, that it stems from the fact that subjects use 
an entirely different decision mechanism, such as a quite simple adaptive 

Subiect 1 Subject 2 

Subiect 3 Subject 4 

pfYln) 

EIGURE 7-5 

process. Because a continuum of states is involved, the mathematical 
problem of trying to formulate a simple learning model is considerable, and 
no formal test of this hypothesis has yet been attempted. 

For the threshold model we have described, the maximization of 
expected payoffs results in a clearly incorrect prediction, namely, that the 
response probability pairs are either (0, 0), (q(n),q(s)), or (1, I),  which pair 
depending on the values of o,,, P, q(n),  and q(s). On the other hand, be- 
cause there are only two internal states, it is not difficult to set up a simple 
experimenter-controlled linear learning model to describe the choice of the 

bias parameters. This leads to asymptotic biases of the form 

U, = 1 - 4(s) and f, = 4(s) 
1 - 4 s )  + [1 - q(n)lb q(s) + q(n)b ' 

where 

and 0 and 8' are learning rate parameters. For the data shown in Figure 
7-4 it is possible to select a simple relation between 0'/0 and the payoffs 
so that the predicted biases are in good accord with the observed ones 
(see Luce, 1963a, p. 73). 

The important point about these examples is that any decision we make 
regarding the nature of the decision process is completely confounded 
with our decision about the nature of the sensory process. For example, 
if we were sure that the threshold model correctly described the sensory 
process, then there would be no question that subjects do not maximize 
their expected money returns. If, however, the threshold model were 
wrong, and the signal detectability modeldescribed the sensory mechanism, 
then this conclusion would not be so clearly warranted. 

I might add that in some of our still unpublished experiments we find 
a suggestion that different decision processes may be involved at different 
times. It appears that subjects initially adjust their biases in much the 
way we would expect from a learning model, but after a considerable 
number of trials the "asymptotic" biases begin to drift toward one of the 
three "optimal" corners of the threshold isosensitivity curve. 

CONCLUSION 

It seems to  me that the main conclusion to be drawn from these examples 
is that we are still not able to decide, even for the simplest experimental 
situations, whether a subject's asymptotic decision process is primarily 
adaptive learning or whether it is based on a more analytic evaluation of 
the situation. Our difficulties stem from at least two sources. In the 
gambling and probability prediction experiments they seem to come mainly 
from the way in which these experiments are carried out and from the 
presentation of only group data. In the psychophysical experiments, in 
which the data frequently seem to be in a more useful form, difficulties 
arise from the fact that a concatenation of at least two processes seems to 
govern the over-all behavior. A third possible source of trouble is that the 
decision process itself may be some mixture of adaptive and analytic proc- 
esses. If so, then until better theories are devised, we can only hope to 
learn how to do experiments that primarily tap one or the other of the two 
processes. 
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